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Abstract
The self-contained derivation of the inverse eigenvalue problem is given using a
discrete approximation of the Sturm–Liouville operator on a bounded interval.
Within this approximation, the Hamiltonian is treated as a finite three-diagonal
symmetric Jacobi matrix. This derivation is more correct in comparison with
previous works which used only single-diagonal matrix. It is demonstrated
that the inverse problem procedure is nothing but the well-known Gram–
Schmidt orthonormalization in Euclidean space for special vectors numbered
by the space coordinate index. All the results of the usual inverse problem
with continuous coordinate are reobtained by employing a limiting procedure,
including the Goursat problem—the equation in partial derivatives for the
solutions of the inversion integral equation.

PACS number: 02.30.Zz

1. Introduction

There is much literature on the inverse scattering problem. It suffices to mention the classical
monographs [1–5], see also [6]. This theory has multiple applications and is still developing
[7]. In parallel with its renovation, attempts to give a clear and obvious treatment were
undertaken [8–10] using a finite-difference approach which reduces the problem to solving
relatively simple algebraic equations. Passage to the limit of the continuous variable allows
one to obtain the classical results of the inverse problem. Thus, the finite-difference version
represents a valuable tool for reproducing all the results of the inversion procedure at a more
accessible level of understanding. This is not only of pedagogical interest. The aim of science
is, among others, to supply the maximum compact and clear knowledge free from superfluous
and often obscure details.

The authors of [8–10] restricted their consideration to the finite-difference matrix
Hamiltonian with potential coefficients only on the main diagonal of the operator. So, there

0305-4470/04/399139+17$30.00 © 2004 IOP Publishing Ltd Printed in the UK 9139

http://stacks.iop.org/ja/37/9139


9140 V M Chabanov

appears a disparity in the numbers of interaction parameters and spectral data (see discussion
below). As a result, we need either to impose some restrictions on spectral parameters or
to introduce additional nonlocal potentials, as is done in the present paper. This problem
was not considered in [8–10], which led to an ‘erroneous’ final result for the potential in the
continuum limit: there must be an additional factor 2 (missed in the papers mentioned) in
front of the derivative of the solution to the inverse problem integral equation (see equation
(37)). This oversight was partially compensated in [11] by Berryman and Green, where
the authors introduced nonlocal potentials which are needed for correct final results in the
continuum limit. However, in respect of their methods, one can mention an insufficiently
grounded introduction of the off-diagonal elements of the matrix Hamiltonian in the difference
approximation proposed by the authors.

At the same time, the inverse eigenvalue problem for the discrete analogue of the Sturm–
Liouville operator is now well developed. There is a sufficiently large number of papers
on this subject, see [12], where one can find most of the references. There are different
variants of the inverse problem in the discrete approximation. All of them deal with a matrix
(finite or infinite) with several diagonals which may differ in number and are recovered
from given (spectral) parameters. For the Gel’fand–Levitan–Marchenko analogue, which is
the most known inversion variant, the central theorem is valid: given the set of eigenvalues
of a three-diagonal Jacobi matrix and the first components of the associated orthonormal
eigenvectors, there exists a unique Jacobi matrix corresponding to these data, see, e.g.,
[12, 13] and references therein. The usual proof of this theorem is performed using orthogonal
polynomials [12].

Thus, we have the continuous and discrete variants, where the inversion procedure is
well established. However, considerably less was done to link them both. Presumably, the
problem is that the recovery procedures in discrete and continuum cases outwardly have
little in common. In the continuum version, the inversion procedure (by Gel’fand–Levitan–
Marchenko) is built as a transition from a certain known system (free motion, as a rule) to
the system with known spectral data but with the unknown potential to be restored. The aim
of this paper is to give such a derivation of the inverse eigenvalue problem from its discrete
variant which would be free from the previous errors.

In the discrete variant, we have to develop, in a more explicit form, a structure similar
to that in the continuum case. In doing so, we have to use a general criterion which would
strongly specify whether our development is correct. The orthogonal polynomials method
gives such a hint. This is the orthonormality relation (in a special spectral measure) which is
valid for any system. As is well known, the Gram–Schmidt method is essential in constructing
these polynomials. So the central idea of the present paper is to employ this method in order
to restore the set of eigenvectors orthonormalized in the initial spectral measure when the
last is changed in a given way. We shall construct some ‘prototype’ of the transformation
procedure that realizes the restoration of the potential of the regular Schrödinger operator in
the continuum case.

We begin, in section 2, with several results consisting of some preliminary constructions
which appear as intermediate steps in the course of the methods discussed. First of all, we
give the discrete statement of the Sturm–Liouville problem on a bounded interval with zero
boundary conditions which is equivalent to consideration of a three-diagonal symmetric Jacobi
matrix. In the continuum limit, these diagonals merge in a single diagonal (local potential).
Then we pose the inverse eigenvalue problem in terms of eigenvalues and associated spectral
weight factors, first components of the orthonormalized eigenvectors. Introducing the so-called
regular solutions admits the explicit presentation of these parameters which serve as a spectral
measure (of bounded support) entering in the Parseval relation for eigenvectors. That measure
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allows us to represent this equality as an orthonormality condition for the same vectors but from
a different standpoint when the energies represent components, and the discrete coordinate
numbers the vectors. The next step is the application of the Gram–Schmidt technique to
obtain a new orthonormal set of eigenvectors (in the sense mentioned) corresponding to the
new measure. We shall see that the procedure indeed reproduces prototypes for equations of
the inverse problem in the continuum limit. The proof is given that such an orthogonalization
is the only possible development. Next, we use the new eigenvectors to recover the potential
coefficients on three diagonals of the Jacobi matrix (discrete Sturm–Liouville operator) by
using the completeness relation for the new eigenvectors.

In section 3, we pass to the continuum limit. We demonstrate how all the discrete
equations-prototypes go over into the classical equations of the inverse Sturm–Liouville
problem: Gel’fand–Levitan equations, expression for the potential, classical Goursat problem,
etc. That accomplishes our programme.

2. Discrete version of the inverse problem on finite interval

2.1. Preliminary notation

It is most easy to demonstrate the essence of the inverse eigenvalue problem by the example
of finite-difference Schrödinger equation in the discrete variable xn, n ∈ Z with the mesh
width �:

−�(xn+1, E) − 2�(xn,E) + �(xn−1, E)

�2
+ V (xn)�(xn, E)

+ u(xn)�(xn+1, E) + u(xn−1)�(xn−1, E) = E�(xn,E), (1)

where V (xn) and u(xn) are real, as this problem is reduced to linear algebraic equations.
The first three terms in this equation represent the finite-difference operator of the second
derivative, i.e., kinetic energy. Note the existence, in the Schrödinger equation, of terms u(xn)

corresponding to a ‘minimally nonlocal’ interaction. We shall soon come back to them and
their introduction will turn out to be justified.

Let us consider the bounded interval [0, π ] with a finite number N of points inside:
x0 = 0; xN+1 = π , so that � = xn+1 − xn = π/(N + 1). Let us supplement equation (1) by
the Dirichlet boundary conditions:

�(x0, E) = �(xN+1, E) = 0. (2)

These zero boundary conditions have the well-known physical interpretation that the movement
of a particle is restricted by the infinitely tall walls at the points x0 and xN+1 (the infinite
rectangular potential well).

The spectrum of the problem (1) and (2) is a ladder of discrete energy levels {Eν}Nν=1 for
bound states representing the unit vectors �ν(xn) ≡ �(xn,Eν),

N+1∑
n=0

��µ(xn)�ν(xn) = δµν.

The Sturm–Liouville problem (1) and (2) can be rewritten in a more visible form by using
the symmetric tridiagonal (Jacobi) matrix (N × N)
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Ĥ = T̂ + Ĵ ,

T̂ =




2/�2 −1/�2 0 0 · · ·
−1/�2 2/�2 −1/�2 0 · · ·

0 −1/�2 2/�2 −1/�2 · · ·
· · · · · · ·
· · · · · · ·
· · · · 0 −1/�2 2/�2




,

(3)

Ĵ =




V (x1) u(x1) 0 0 · · ·
u(x1) V (x2) u(x2) 0 · · ·

0 u(x2) V (x3) u(x3) · · ·
· · · · · · ·
· · · · · · ·
· · · · 0 u(xN−1) V (xN)




,

which acts on the vector-column �ν ∈ R
N :

Ĥ�ν = Eν�ν, �ν =




�(x1, Eν)

�(x2, Eν)

·
·
·

�(xN,Eν)




.

This explicit form elucidates why the u(xn) stands in front of �(xn+1, E): this is because
of the upper u-diagonal in Ĵ which is one element shorter than the main V-diagonal and
contains N − 1 elements. The same coefficients form up the lower diagonal (thanks to
the matrix symmetry). Let us specially note that homogeneous boundary conditions being
generally different from (2) would require some modification of the matrix representation (3).
In passing to the continuum limit � → 0, it will be impossible to distinguish between the
u- and V-diagonals, i.e., the resulting interaction will be simply the sum of limiting values for
us and Vs. A paragraph later, we shall give the motivation for the appearance of the additional
diagonals in the interaction matrix Ĵ .

Besides the energy levels, let us introduce additional fundamental spectral parameters,
namely, norming constants or spectral weight factors. By definition, these are the coefficients
cν of proportionality between the normalized eigenstates �ν(xn) and so-called regular
solutions ϕ(xn, Eν) at the eigenvalue energy, ϕ(0, E) = 0, ϕ(x1, E) = � (i.e., the derivative
is equal to 1), ϕν(xn) ≡ ϕ(xn, Eν):

�ν(xn) = cνϕν(xn). (4)

The continuum analogue of the regular solution satisfies ϕ(0, E) = 0, ϕ′(x, E)|x=0 = 1. The
continuum generalization of the spectral weight factors introduced is obvious. In the classical
inverse Sturm–Liouville problem (continuous coordinate), it is well known that the double set
of the spectral parameters {Eν, cν} uniquely specifies the potential.

2.2. The inversion procedure as the Gram–Schmidt reorthogonalization

Now our task is to pose such a discrete version of the inverse Sturm–Liouville problem that,
in passing to the continuum limit, as direct reproduction of all the results of the continuum
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version as possible may be feasible. So, the problem within which it seems logical to work
is posed as follows: given the set {Eν, cν} with cν in (4), the potential matrix Ĵ with the
coefficients V (xn) and u(xn) must be recovered completely. In principle, a question may
arise whether the three-diagonal Hamiltonian with the ‘nonlocal’ u-coefficients is consistent
with the uniqueness of the potential recovery from the set {Eν, cν}. What forces extra us?
As has already been mentioned in the introduction, any set {Eν, cν} can occur for a unique
three-diagonal Ĥ . Moreover, there is an extension of that result. It is the theorem by Gladwell
and Willms [13] in which the statement was proved that a symmetric p-band matrix (a matrix
with 2p + 1 bands, p bands below the diagonal) may be uniquely constructed (apart from
certain sign ambiguities) from its eigenvalues and the first p components of its normalized
eigenvectors. Hence, once we know all Eνs and the first eigenvector components (by virtue of
equation (4) these are �cν in our problem) we can uniquely restore 1-band, i.e., three-diagonal
Hamiltonian (3). That also accounts for the us.

Let us give an additional ‘half-heuristic’ explanation of this fact. If we have only a local
potential V (xn) with N values at N points, the number N of free parameters {V (xn)}Nn=1 equals
exactly the number of eigenvalues Eν . To the point, the corresponding inverse problem has
no complete solution. If we introduce both spectral parameters, Eν and cν , while the single-
diagonal Ĵ persists, we shall really face a problem of overdetermination of the set {Eν, cν}
of two N − 1 free parameters. In fact, there are N levels Eν and N − 1 parameters cν by
virtue of the relation

∑N
ν=1 c2

ν = 1/�3 that follows from (6) for n = m = 1, while V (xn)

contains only N ones. It is introduction of N − 1 coefficients u(xn), n = 1, . . . , N − 1 into
equation (1) (or additional diagonals in (3)) that ensures the equality of numbers of spectral
data and interaction parameters. In the case of continuous coordinate, the overfilling of the
set of spectral parameters reveals itself only in many-dimensional D � 2 problems, so we
shall manage to recover the one-dimensional local potential from the complete spectral set
(see (37)).

The functions ϕν(xn) can be considered as vectors in special Hilbert (Euclidean, to be
precise) space, in which the coordinate xn numbers the eigenvectors while energy index ν is
only used to denote the νth vector component. The inner product in that space is determined
by the measure given by the spectral weight factors cν . In fact, the Parseval’s completeness
relation

N∑
ν=1

�ν(xm)�ν(xn) = δmn/� (5)

can be rewritten using equation (4) as

N∑
ν=1

c2
νϕν(xm)ϕν(xn) = δmn/�. (6)

Let us consider this expression as an orthogonality relation for the vectors ϕν(xm) and ϕν(xn)

(in the limit � → 0, the ‘numbers’ xm,n of the vectors become the continuous variable x).
Here, the inner product is given by not simply a sum over energy index ν but also by a sum
with a weight (measure) c2

ν .
Different potentials correspond to different weight factors determining the metrics of our

‘energy space’, but the relation (6) holds true for any potential. In the classical variant, the

inverse problem can be treated as a transition to the sought potential
◦
V (xn) → V (xn) from a

certain ‘initial’ (in what follows we shall use the symbol ‘◦’ to denote everything related to

the initial system) potential
◦
V (xn), for which all the solutions

◦
ϕν(xn) and the whole spectral
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set { ◦
Eν,

◦
cν} are known, and the relation (6) is valid:

N∑
ν=1

◦
c 2

ν

◦
ϕν(xm)

◦
ϕν(xn) = δmn/�. (7)

All this gives us a hint for deriving new solutions corresponding to the given spectral set
{Eν, cν}Nν=1. Although we do not yet know the sought potential matrix Ĵ , we know beforehand
that the regular solutions ϕν(xn) to this matrix must satisfy the orthogonality relation (6) with
the new cν . We shall catch at this fact and use the orthogonality relation as a central criterion
in finding new eigenvectors (solutions ϕν(xn)). Changing the metrics of Euclidean space in

replacing
◦
cν → cν results in that the ‘old’ unit vectors

◦
ϕν(xn) are no longer orthogonal. So the

idea is as follows: once new unit vectors must satisfy equation (6), we could obtain them, e.g.,

orthogonalizing the
◦
ϕν(xn) with the new weight c2

ν by using the Gram–Schmidt scheme. In
other words, the new vectors obtained in that way and satisfying (6) with the weight multipliers
c2
ν will be the solutions to the new potentials V s and us. Indubitably, this makes sense only

when the procedure really gives the desired vectors, i.e., it is unique (see the proof further on).

For simplicity, we shall at first think
◦
Eν = Eν . Let us recall this standard orthogonalization

procedure by the example of two initially nonorthogonal (in a sense of new weight function)

vectors (i.e., when N = 2)
◦
ϕν(x1),

◦
ϕν(x2), ν = 1, 2. As the first unit vector ϕν(x1) of the new

system, we take the unchanged unit vector
◦
ϕν(x1), and the second unit vector is constructed

from the second unaltered one, only we have to subtract everything superfluous (parallel to
◦
ϕν(x1)) for the orthogonality with the new measure:

ϕν(x1) = ◦
ϕν(x1); ϕν(x2) = ◦

ϕν(x2) + �K(x2, x1)
◦
ϕν(x1).

The coefficient K(x2, x1) is derived from the condition of orthogonality of the new vectors
with the new weight cν :

ϕν(x2) ⊥ ϕν(x1) ≡ ◦
ϕν(x1).

We have
2∑

ν=1

c2
ν

◦
ϕν(x1)

◦
ϕν(x2) + �

2∑
ν=1

c2
νK(x2, x1)

◦
ϕ 2

ν(x1) = 0 �⇒ K(x2, x1)

+
2∑

ν=1

c2
ν

◦
ϕν(x1)

◦
ϕ ν(x2) + �K(x2, x1)

2∑
ν=1

(
c2
ν−

◦
c 2

ν

) ◦
ϕ 2

ν(x1) = 0, (8)

where we add and subtract the term
◦
c 2

ν from the multiplier c2
ν and, furthermore, use equation (7).

We can rewrite the last equality in the form as follows (extremely simplified two-dimensional
‘prototype’ of the inverse problem equation):

K(x2, x1) + Q(x2, x1) + �K(x2, x1)Q(x1, x1) = 0, (9)

where

Q(xm, xn) =
N=2∑
ν=1

c2
ν

◦
ϕν(xm)

◦
ϕν(xn) −

N=2∑
µ=1

◦
c 2

µ

◦
ϕµ(xm)

◦
ϕµ(xn); m, n = 1, 2. (10)

In the general case of N-dimensional Euclidean space we shall follow the same scheme. In

doing so, it is possible to take into account the case when the levels change:
◦
Eν 	= Eν . We must
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orthogonalize N vectors in the measure c2
ν :

◦
ϕ(xm,Eν), (m = 1, 2, . . . , N, ν = 1, 2, . . . , N).

Consequently, for the new solutions we have

ϕ(xm,Eν) = ◦
ϕ(xm,Eν) +

m−1∑
n=1

�K(xm, xn)
◦
ϕ(xn, Eν), (11)

where the coefficients K (the kernel of the transformation operator (11)) follow from the
conditions of orthogonality of the new vectors (in measure c2

ν) ϕ(xm,Eν)(m = 1, 2, . . . , N):

ϕ(xm>n,Eν) ⊥ ϕ(xn, Eν),

which lead to the system of algebraic equations for K-discrete analogue of the central equations
of the inverse problem:

K(xm, xn) + Q(xm, xn) +
m−1∑
p=1

�K(xm, xp)Q(xp, xn) = 0; m > n, (12)

where Q(xn, xm) is determined as in (10), only the values m and n are no longer restricted
to 1 and 2, and the indices µ and ν number solutions at the initial and shifted energy levels,
respectively.

Q(xm, xn) =
N∑

ν=1

c2
ν

◦
ϕ(xm,Eν)

◦
ϕ(xn, Eν) −

N∑
µ=1

◦
c 2

µ

◦
ϕ(xm,

◦
Eµ)

◦
ϕ(xn,

◦
Eµ). (13)

Let us note that the form (11) ensures the desired boundary condition for the regular solution:
ϕ(x0, Eν) = 0;ϕ(x1, Eν) = �. The system (12) of the recurrence computation of Ks provides
them uniquely. We can formally introduce the diagonal terms K(xn, xn) (bearing no relation
to ϕ(x,Eν)) such that K(xn+1, xn)−K(xn, xn) ∼ O(�) which will be useful in what follows.

The following is very important and will be used in the subsequent derivations. When the

first m + 1 unit vectors
◦
ϕ(xi, Eν), i = 1, . . . , m + 1 are orthogonalized, this corresponds to an

intermediate submatrix–block transformation of the initial Jacobi-like operator (3) so that

Ĵ =
(

Ĵ m 0

0
◦̂
JN−m

)
,

Ĵ m =




V (x1) u(x1) 0 0 · · ·
u(x1) V (x2) u(x2) 0 · · ·

0 u(x2) V (x3) u(x3) · · ·
· · · · · · ·
· · · · · · ·
· · · 0 u(xm−1) V (xm)

◦
u(xm)




, (14)

◦̂
JN−m =




◦
u(xm)

◦
V(xm+1)

◦
u(xm+1) 0 · · ·

0
◦
u(xm+1)

◦
V(xm+2)

◦
u(xm+2) 0 · ·

· · · · · · ·
· · · · · · ·
· · · · 0

◦
u(xN−1)

◦
V(xN)




,

where the symbols 0 in the top-right and bottom-left corners of the Ĵ matrix denote zero
(m × N − m − 1) and (N − m × m − 1) matrices, respectively. The submatrix Ĵ m is formed

up by the perturbed coefficients while the
◦̂
JN−m is not yet affected by the transformation
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associated with the reorthogonalization. Note that the last row of the submatrix Ĵ m contains

only two transformed elements, u(xm−1) and V (xm), apart from the
◦
u(xm). This is because

only the (m × m) quadratic submatrix was transformed which contains, in its last row, two
nonzero elements mentioned. The coefficients of that intermediate transformation block may

be found from formulae (20) and (21) where one should substitute
◦
u(xm) for u(xm). See also

the subsequent discussion after the formulae (20) and (21).

2.3. The theorem of uniqueness for the Gram–Schmidt scheme

Now we are ready to give the proof that the above procedure is unique.

Theorem. For the spectral set {Eµ, cµ}Nµ=1 to the Sturm–Liouville problems (1) and (2), there
is a unique regular solution to (1) at eigenvalue Eν given by the decomposition (11) with the

mth summand
◦
ϕ(xm,Eν).

Proof. Let us carry it out by induction. Suppose that the desired transformed vectors (11)
(being numbered by m) are uniquely given by equation (11) for m � N̄, N̄ < N for a certain
N̄ being the integer. For N̄ = 1, this is verified trivially. Let us show that formula (11) holds
true at the point xN̄+1. Indeed, ϕ(xN̄+1, Eν), being orthogonal to all ϕ(xm,Eν),m � N̄ , can

be sought, in principle, as a combination of the initial
◦
ϕ(xn, Eν) for all n. The coefficients

of such a hypothetical combination (there are N pieces of them in all) have to be determined
from the condition of orthogonality of ϕ(xN̄+1, Eν) to both ϕ(xm,Eν),m = 1, . . . , N̄ and
certain N − N̄ unknown vectors from the new orthogonal set (6). For ascertaining what we
shall do now, we involve the Schrödinger equation (1), which is a recurrence procedure of
the step-by-step computation of ϕ(xn, Eν). As N vectors are obtained, we mean the block
operator Ĵ N̄ in (14), the last row:

−ϕ(xN̄+1, Eν) − 2ϕ(xN̄ , Eν) + ϕ(xN̄−1, Eν)

�2
+ V (xN̄ )ϕ(xN̄ , Eν)

+
◦
u(xN̄ )ϕ(xN̄+1, Eν) + u(xN̄−1)ϕ(xN̄−1, Eν) = Eνϕ(xN̄ , Eν).

It is seen that (
◦
u(xN̄ ) − 1/�2)ϕ(xN̄+1, Eν) is a linear combination of (u(xN̄−1) −

1/�2)ϕ(xN̄−1, Eν), (V (xN̄ ) + 2/�2)ϕ(xN̄ , Eν) and Eνϕ(xN̄ , Eν). Consequently, by the

assumptions of the validity of (11) for m � N̄ , (
◦
u(xN̄ ) − 1/�2)ϕ(xN̄+1, Eν) can only be

represented in terms of (V (xN̄ ) + 2/�2)K(xN̄ , xm)
◦
ϕ(xm,Eν),m = 1, . . . , N̄ − 1; (V (xN̄ ) +

2/�2)
◦
ϕ(xN̄ , Eν); (u(xN̄−1)−1/�2)K(xN̄−1, xm)

◦
ϕ(xm,Eν),m = 1, . . . , N̄ −2; (u(xN̄−1)−

1/�2)
◦
ϕ(xN̄−1, Eν); K(xN̄−1, xm)Eν

◦
ϕ(xm,Eν),m = 1, . . . , N̄−1 and Eν

◦
ϕ(xN̄ , Eν). For the

last term, we find from the non-perturbed Schrödinger equation that Eν

◦
ϕ(xN̄ , Eν) is expressed

in terms of (
◦
u(xN̄ ) − 1/�2)

◦
ϕ(xN̄+1, Eν), (

◦
V (xN̄ ) + 2/�2)

◦
ϕ(xN̄ , Eν), (

◦
u(xN̄−1) − 1/�2)

◦
ϕ(xN̄−1, Eν) (and similarly for other Eν

◦
ϕ(xm,Eν)) and, finally, the ϕ(xN̄+1, Eν) must be sought

as a linear combination of
◦
ϕ(xm,Eν),m = 1, . . . , N̄ + 1. In other words, ϕ(xN̄+1, Eν) ∈

span{ ◦
ϕ(xm,Eν)}N̄+1

m=1, besides that ϕ(xN̄+1, Eν) ⊥ span{ ◦
ϕ(xm,Eν)}N̄m=1 = span{ϕ(xm,Eν)}N̄m=1.

It is well known that the Gram–Schmidt orthogonalization enables a unique solution satisfying

these two conditions. Note that the (N̄+1)th term (
◦
u(xN̄ )−1/�2)ϕ(xN̄+1, Eν) is a combination

of the summand (
◦
u(xN̄ ) − 1/�2)

◦
ϕ(xN̄+1, Eν) and other terms with m � N̄ . In other words,

in the decomposition of ϕ(xN̄+1, Eν), we have the term
◦
ϕ (xN̄+1, Eν) with the unit factor.

Consequently, ϕ(xN̄+1, Eν) is represented in the form (11) again. �
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2.4. Solutions to the recovered potential and its derivation

It should be noted that formula (11) is also valid for solutions at energies E lying between
the levels Eν where the regular solutions, being the Cauchy problem solutions, are defined
(though nonphysical). Do not confuse ‘running’ energy values at which the solutions ϕ(xm,E)

are defined with the energies occurring in the inverse problem equations (13). Indeed, let us
decompose ϕ(xm,E) into the complete set of solutions ϕ(xm,Eν) (in a sense of the usual
inner product

∑N
m=1�cνcµϕ(xm,Eν)ϕ(xm,Eµ)):

ϕ(xm,E) =
N∑

ν=1

ξ(E,Eν)ϕ(xm,Eν); ξ(E,Eν) =
N∑

m=1

�cνϕ(xm,Eν)ϕ(xm,E). (15)

Since ϕ(xm,Eν)s are expressed, in accordance with (11), in terms of the unperturbed
◦
ϕ(xm,Eν), we shall expand them, too, in a complete set of old solutions

◦
ϕ(xm,

◦
Eµ):

◦
ϕ(xm,Eν) =

N∑
µ=1

ζ(Eν,
◦
Eµ)

◦
ϕ(xm,

◦
Eµ);

(16)

ζ(Eν,
◦
Eµ) =

N∑
m=1

�
◦
cµ

◦
ϕ(xm,Eν)

◦
ϕ(xm,

◦
Eµ).

Combining (11), (15) and (16), we get the following expression for the new solutions at
arbitrary E:

ϕ(xm,E) =
∑
µ,ν

A(E,Eν,
◦
Eµ)

◦
ϕ(xm,

◦
Eµ) +

∑
µ,ν

m−1∑
n=1

�K(xm, xn)

×A(E,Eν,
◦
Eµ)

◦
ϕ(xn,

◦
Eµ); A(E,Eν,

◦
Eµ) = ξ(E,Eν)ζ(Eν,

◦
Eµ).

(17)

In the limit when the new and old spectral parameters coincide, K vanishes and, hence,
ϕ(xm,E) turn into the unperturbed solution

◦
ϕ(xm,E) =

∑
µ,ν

A(E,
◦
Eν,

◦
Eµ)

◦
ϕ(xm,

◦
Eµ).

On the other hand, putting m = 1 in this equality and formula (17) we have (
◦
ϕ(x1, E) =

ϕ(x1, E) = �)∑
µ,ν

A(E,
◦
Eν,

◦
Eµ)� =

∑
µ,ν

A(E,Eν,
◦
Eµ)�,

or
◦
ϕ(x1, E) =

∑
µ,ν

A(E,
◦
Eν,

◦
Eµ)

◦
ϕ(x1,

◦
Eµ) =

∑
µ,ν

A(E,Eν,
◦
Eµ)

◦
ϕ(x1,

◦
Eµ).

By virtue of the uniqueness of the decomposition of
◦
ϕ(xm,E) in terms of

◦
ϕ(xm,

◦
Eµ), the last

equality holds true at any m:
◦
ϕ(xm,E) =

∑
µ,ν

A(E,Eν,
◦
Eµ)

◦
ϕ(xm,

◦
Eµ).

Substituting this expression in (17), we get

ϕ(xm,E) = ◦
ϕ(xm,E) +

m−1∑
n=1

�K(xm, xn)
◦
ϕ(xn, E). (18)
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Let us stress here that K is independent of energy E. Formulae (18), (12) and (13) give the
expression for K in the form of the sum of products of the old and transformed solutions:

K(xm, xn) = −
N∑
ν

c2
νϕ(xm,Eν)

◦
ϕ(xn, Eν) +

N∑
µ

◦
c 2

µϕ(xm,
◦
Eµ)

◦
ϕ(xn,

◦
Eµ). (19)

It remains to obtain equations for the transformed potentials V and u. We already know
the solutions of equation (1) with the unknown potentials V (xn) and u(xn) (see formulae (11)
and (12)), i.e., eigenvectors of the new Hamiltonian plus associated eigenvalues Eν . As has
been mentioned, by virtue of the theorem by Gladwell and Willms [13], this is enough for
recovering the three-diagonal Hamiltonian matrix (with off-diagonal elements). These authors
used the block Lanczos algorithm. However, we shall apply an outwardly different method
pursuing the aim of reproducing final formulae in the continuum limit. Let us multiply both

parts of the Schrödinger equation (1) for the solutions ϕ(xm,
◦
Eµ) (equation (18)) and

◦
ϕ(xn,

◦
Eµ)

by
◦
ϕ(xn,

◦
Eµ) and ϕ(xm,

◦
Eµ), respectively, sum over µ with weight

◦
c 2

µ and subtract from each
other the resulting expressions. At fixed m, we perform this procedure for n = m,m − 1, . . . .
In calculating sums (over µ) one should take into account relation (7). As a result, we get the
following equations for V and u:

{V (xm)− ◦
V(xn)}K(xm, xn) + u(xm)K(xm+1, xn)− ◦

u(xn)

×K(xm, xn+1) + u(xm−1)K(xm−1, xn)− ◦
u(xn−1)K(xm, xn−1)

= K(xm+1, xn) − 2K(xm, xn) + K(xm−1, xn)

�2

− K(xm, xn+1) − 2K(xm, xn) + K(xm, xn−1)

�2
; n � m − 2, (20)

and for n = m,m − 1


u(xm−1)− ◦
u(xm−1)

�
= K(xm+1, xm−1) − K(xm, xm−2)

�2

−V (xm)K(xm, xm−1) +
◦
V(xm−1)K(xm, xm−1)

−u(xm)K(xm+1, xm−1) +
◦
u(xm−2)K(xm, xm−2); n = m − 1

V (xm)− ◦
V(xm)

�
= K(xm+1, xm) − K(xm, xm−1)

�2

−u(xm)K(xm+1, xm) + K(xm, xm−1)
◦
u(xm−1); n = m,

(21)

where the terms K(xm, xn) for which m, n > N or m, n < 1 are omitted. But for n = m + 1
we obtain that u(xm) =◦

u(xm). There is nothing strange in this because the summation is

carried out for the term
◦
ϕ(xm+1,

◦
Eµ) that is orthogonal to all

◦
ϕ(xn,

◦
Eµ), n < m + 1. The

kernel K containing all the information about the new solutions just stands at these summands,
see formula (18) for n = m + 1. In other words, for the case n = m + 1 the summation
expunges everything that bears a relation to the new system under construction. Indeed, from

the Schrödinger equation for
◦
ϕ(xm+1,

◦
Eµ) multiplied by ϕ(xm,

◦
Eµ) and summed over µ with

the weight
◦
c 2

µ we have

N∑
µ=1

◦
c 2

µ

◦
Eµ ϕ(xm,

◦
Eµ)

◦
ϕ(xm+1,

◦
Eµ) =

◦
u(xm)

�
− 1

�3
.
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How should one treat this? One variant is that u(xm)= ◦
u(xm), which corresponds to restoration

of a m × m submatrix for which the element
◦
u(xm) is an outer one, see (14). This can also

serve as a proof of (14). The other interpretation is that u(xm) 	= ◦
u(xm) (but not for m = N ),

nevertheless (i.e., the above procedure does not work). This takes place for the whole Ĵ -
matrix transformed but equations (21) alone do not allow the computation of u(xm). How
then to uniquely restore Ĵ will be discussed a bit later, but now we must ascertain how it
is possible that the same solution ϕ(xm,E) may satisfy the Schrödinger equation (1) with

different potential coefficients
◦
u(xm) and u(xm) at xm+1. The matter is that we deal with

(finite-difference) nonlocal potential and this ambiguity is just characteristic of it. Indeed,
let ϕ(xm,E) satisfy the Schrödinger equations with both {u1(xm−1), V1(xm), u1(xm)} and
{u2(xm−1), V2(xm), u2(xm)}. Subtracting these equations from each other we have

[V1(xm) − V2(xm)]ϕ(xm,E) + [u1(xm) − u2(xm)]ϕ(xm+1, E)

+ [u1(xm−1) − u2(xm−1)]ϕ(xm−1, E) = 0.

Thus, we can see that, for several nonlocal potential coefficients coupling neighbouring
x points, this equation clearly demonstrates that V1(xm)−V2(xm) and other potential differences
may all be nonzero. Summing up this discussion, we have elucidated that the procedure used
for derivation of (20) and (21) cannot distinguish all the variants of the u(xm)-coefficient
determination proceeding from a general incapability of giving a unique nonlocal interaction
associated with a certain solution of the Schrödinger equation.

However, for the whole vector ϕ(xm,Eν), i.e., the solution defined at all the points
xm,m = 1, . . . , N , we are able to uniquely derive the quadratic potential matrix Ĵ whose
eigenvectors are ϕ(xm,Eν). Taking m = N we first find u(xN−1), V (xN) and u(xN). Of
course, this requires the knowledge of u(xN). However, we have no more equations for
determining the potential coefficient u(xN). We can see that u(xN) is a continuation of the last
Nth row of the matrix Ĵ . This resembles the case with the unfinished restoration of Ĵ , see (14),
i.e., the potential perturbation (in the form of a quadratic matrix) never reached u(xN). That
is, the u(xN) is independent of the transformation generated by K-coefficients. Then, taking

{Eν, cν} = { ◦
Eν,

◦
cν}, we can see that K = 0 and u(xN) exactly corresponds to the reference

potential. Thus, we have u(xN) = ◦
u(xN). Next, at the point xN we have, instead of (21), the

following system of equations:




u(xN−1) − ◦
u(xN−1)

�
=

∑N
µ=1

◦
c 2

µϕ(xN+1,
◦
Eµ)

◦
ϕ(xN−1,

◦
Eµ) − K(xN, xN−2)

�2

−V (xN)K(xN, xN−1) +
◦
V(xN−1)K(xN, xN−1)

−u(xN)

N∑
µ=1

◦
c 2

µϕ(xN+1,
◦
Eµ)

◦
ϕ(xN−1,

◦
Eµ) +

◦
u(xN−2)K(xN, xN−2),

V (xN) − ◦
V(xN)

�
=

∑N
µ=1

◦
c 2

µϕ(xN+1,
◦
Eµ)

◦
ϕ(xN,

◦
Eµ) − K(xN, xN−1)

�2

−u(xN)

N∑
µ=1

◦
c 2

µϕ(xN+1,
◦
Eµ)

◦
ϕ(xN,

◦
Eµ) + K(xN, xN−1)

◦
u(xN−1),

(22)
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where ϕ(xN+1,
◦
Eµ) is found from the Schrödinger equation (1):

ϕ(xN+1,
◦
Eµ) = �2

1 − �2u(xN)
[u(xN−1)ϕ(xN−1,

◦
Eµ) + V (xN)ϕ(xN,

◦
Eµ)

− ◦
Eµ ϕ(xN,

◦
Eµ)] − −2ϕ(xN,

◦
Eµ) + ϕ(xN−1,

◦
Eµ)

1 − �2u(xN)
, (23)

where ϕ(xn,
◦
Eµ) is given by (18) and u(xN) = ◦

u(xN). From (22) and (23), we obtain V (xN)

and u(xN−1). We then substitute the value u(xN−1) (by virtue of the symmetry of the potential
matrix) into equations (20) for m = N − 1; n = m − 2,m − 3 from which we find, in turn,
V (xN−1) and u(xN−2). Afterward, we substitute this last coefficient into equation (20) for
m = N −2; n = m−2,m−3 and get V (xN−2) and u(xN−3) and so on. Thus, these equations
allow the computation of V and u via the solutions of the inverse problem equation (12)—the
coefficients K(xm, xn),m > n (plus an additional requirement concerning u(xN)). For any
finite N, these linear equations are uniquely solved.

However, with the N being sufficiently large, the numerical instability increases, we mean
the well-known problem of the ill-posed inversion procedure. Of course, the difference scheme
itself can be treated as a regularization of the continuum inverse problem, but a concrete recipe
depends on a specific problem under consideration. Most generally, the essence of these
algorithms is that we need to change concordantly the regularization parameter (i.e, the mesh
width �) and the estimation precision δ{Eν, cν} so that the errors in the potential under
restoration and the corresponding solutions may not exceed (in a certain norm) the limits
consistent with the errors in spectral data. Explicitly, there exists a function �(δ{Eν, cν}) such
that for any ε > 0 one can find the number δ(ε) such that if ρS({Eν, cν}, {Eν, cν} + δ{Eν, cν}) �
δ(ε) then ρV ({V (1)(xi), u

(1)(xi)}, {V (2)(xi), u
(2)(xi)}) < ε, where ρS and ρV denote metrics

functions for the spaces {Eν, cν} ⊆ R
2N−1 and {V (xi), u(xi)} ⊆ R

2N−1, respectively.

3. Continuum limit

3.1. Preliminary remarks

In this section, we shall pass to the limit of the continuous variable x, i.e., to the limit � → 0
(N → ∞) so that �N = πN/(N + 1) → π, xm → x in formulae (11), (12), (20) and (21).
There are known (sufficient) conditions for the convergence of the difference scheme. This
scheme must be numerically stable, unique and approximate the continuum problem. All the
derivations below mainly concern approximation aspects. However, we need the theorem of
numerical stability. The regularization technique resolves this problem in the following way:
we must decrease the mesh width � and make the estimation of the spectral data more precise
in a concordant manner. As an example, we can recall the standard difference approximation
of the first-order differentiation operator

f (xn) − f (xn−1)

�
→ df

dx
, (24)

which is ill-posed but has the continuum limit. Let us give here the standard rules of the
transitions from other finite-difference operators to their continuum counterparts:∑

� →
∫

dx, (25)

f (xn+1) − 2f (xn) + f (xn−1)

�2
→ d2f

dx2
. (26)
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Thus, the existence of the continuum limit may be substantiated by the hypothesis
(based on the regularization possibilities) that we can choose (a very subtle fit) the mesh
{x0, x1, . . . , xn, . . . , xN+1} that would satisfy regularization properties (see above). As
δ{Eν, cν} → 0 and �(δ{Eν, cν}) → 0, our (difference) regularized approximate solutions
tend in metrics ρV to the exact solutions of the continuous problem. In what follows, we
shall mean, by the terms ‘go over into . . .’, etc, the convergence in this metrics (or similar
metrics for the solutions to the potential to recover). The metrics itself may be chosen, e.g., as
follows: ρ(x, y) =√∑2N−1

k=1 (yk−xk)2. Most likely, however, a uniform convergence is valid. But
this needs to be carefully examined (open problem).

Now let us look at the Parseval relation that takes, in the continuum limit, its usual form
for the infinite-dimensional (Hilbert) space

∞∑
µ=1

◦
c 2

µ

◦
ϕ(x,

◦
Eµ)

◦
ϕ(y,

◦
Eµ) = δ(x − y), (27)

and the same is for the new regular solutions ϕ(x,E).
In the continuum case, we have ϕ(0, E) = 0, ϕ′(0, E) = 1. Spectral weight factors

are in this case, too, the coefficients of proportionality between normalized eigenfunctions
and regular solutions. That is why they are also referred to as norming constants since the
multiplication by cν = 1

/ ∫ π

0 ϕ2(x, Eν) dx turns a regular solution (at E = Eν) into the
normalized one,

� ′(x, Eν)|x=0 = cν.

3.2. Passage to the continuum limit for the solutions and the potential

The expression for the transformed regular solutions has now the following form (using (25)):

ϕ(x,Eν) = ◦
ϕ(x,Eν) +

∫ x

0
K(x, y)

◦
ϕ(y,Eν) dy, (28)

and similarly

ϕ(x,E) = ◦
ϕ(x,E) +

∫ x

0
K(x, y)

◦
ϕ(y,E) dy, (29)

where x ∈ [0, π ]. These formulae have just demonstrated the passage to the limit � → 0.
For the kernel K of the operator (28) which transforms the solutions to the initial potential into
the solutions to the new one (generalized shift operator), we have the continuum analogue of
equation (12)—the inverse problem equation proper:

K(x, y) + Q(x, y) +
∫ x

0
K(x, z)Q(z, y) dz = 0, (30)

where the kernel Q is constructed from the unperturbed functions with the old and new spectral
parameters (as in equation (10)):

Q(x, y) =
∑

ν

c2
ν

◦
ϕ(x,Eν)

◦
ϕ(y,Eν) −

∑
µ

◦
c 2

µ

◦
ϕ(x,

◦
Eµ)

◦
ϕ(y,

◦
Eµ). (31)

For the continuous coordinate, expression (19) for K has a similar form

K(x, y) = −
∑

ν

c2
νϕ(x,Eν)

◦
ϕ(y,Eν) +

∑
µ

◦
c 2

µϕ(x,
◦
Eµ)

◦
ϕ(y,

◦
Eµ). (32)

As we have carried out the passage to the continuum limit in solutions (11), one can also
proceed to such a limit for the potential. In fact, the expressions for the potential coefficients
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(20) and (21) were secondary with respect to (11), i.e., we can always derive them from the
Schrödinger equation using the information about its solutions (see the section above). As
has been shown, this procedure is substantially based upon the completeness relation which
stands good for any �, including the continuum case. Moreover, we might use the continuum
solution (29) and the Parseval relation (27) for the continuum potential to be derived. However,
we choose the way of continuum passage in (20) and (21). Another point is that the continuum
potential is local. Indeed, the us and V in each row of the discrete Sturm–Liouville operator are
specified at the very neighbouring points xn and xn+1 that merge if we pass to the continuum
limit, which entails, in turn, superimposing the potential coefficients at one point: V +2u. The
distinct feature of the local potential is that the limiting equation must determine it uniquely in
contrast to (20) and (21) which could not uniquely specify us and Vs by reason of the ‘nonlocal’
interaction in the discrete case (we remember that there was required additional knowledge of
u(xN) at the boundary of the interval for the uniqueness). But for the Schrödinger equation
with a local potential, it is well known that the potential always occurs for the unique solution
(with given boundary conditions) and vice versa. Thus, we can anticipate beforehand an
expression for a unique specification of the local potential in the continuum case.

We shall now prove that, as � → 0, equations (20) and (21) go over, respectively, into

{Vd(x)− ◦
V d(y) + 2[ud(x)− ◦

ud(y)]}K(x, y) = ∂2

∂x2
K(x, y) − ∂2

∂y2
K(x, y), (33)

and 


Ṽd(x)− ◦
V d(x) + ũd(x)− ◦

ud(x) = 2 d
dx

K(x, x)

{Ṽd(x)− ◦
V d(x) + ũd(x)− ◦

ud(x)}K(x, x)

= ∂2

∂x2 K(x, y)
∣∣
y=x

− ∂2

∂y2 K(x, y)
∣∣
y=x

,

(34)

where Vd(x) ≡ lim �→0
m→∞ V (xm) and, analogously, ud(x) ≡ lim �→0

m→∞ u(xm). The tilde sign
stands for the potentials obtained in passing to the limit of the continuous coordinate in the
solutions of equations (21).

In developing these equalities, it is useful to employ the diagonal terms K(xn, xn)

such that K(xn+1, xn) − K(xn, xn) ∼ O(�). First of all, let us consider the term
(K(xm+1, xm−1) − K(xm, xm−2))/�

2 in (21). We add to and subtract from the expression
in the numerator the term K(xm−1, xm−1) − K(xm, xm). Then
K(xm+1, xm−1) − K(xm, xm−2)

�2
= K(xm+1, xm−1) + K(xm−1, xm−1)

�2

− K(xm, xm) + K(xm−1, xm−1) − K(xm, xm) + K(xm, xm−2)

�2
= ζ.

Next, let us again add to and subtract from the new expression in the numerator the term
2K(xm, xm−1):

ζ = K(xm+1, xm−1) − 2K(xm, xm−1) + K(xm−1, xm−1)

�2

− K(xm, xm) − 2K(xm, xm−1) + K(xm, xm−2)

�2

+
K(xm, xm) − K(xm−1, xm−1)

�2
.

The first two lines in this expression are the second derivatives with respect to the first and
second arguments of K(x, y) (see (26)). Hence, in the continuum limit they become

∂2

∂x2
K(x, y)

∣∣∣∣
y=x

− ∂2

∂y2
K(x, y)

∣∣∣∣
y=x

.
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The third fraction diverges as � → 0: �−1 dK(x, x)/dx. As a result, we have

K(xm+1, xm−1) − K(xm, xm−2)

�2
−→ ∂2

∂x2
K(x, y)

∣∣∣∣
y=x

− ∂2

∂y2
K(x, y)

∣∣∣∣
y=x

+ �−1 d

dx
K(x, x).

(35)

Likewise, it is not difficult to obtain that

K(xm+1, xm) − K(xm, xm−1)

�2
= K(xm+1, xm) − K(xm, xm) + K(xm, xm) − K(xm, xm−1)

�2

−→�−1 d

dx
K(x, x); � → 0. (36)

In equation (20) we can see the finite-difference second derivative in an explicit form. So
in the continuum case this equation becomes (33). If we introduce V (x) ≡ Vd(x) + 2ud(x)

the term in front of K(x, y) is simply the difference V (x) − ◦
V(y). It is obvious that we

introduced a local limiting potential which results from the limiting merging of V-diagonal
and nearby u-diagonals.

Now let us multiply both sides of equations (21) for n = m − 1 and n = m by �. We
sum the resulting equations and pass to the continuum limit. Then, by virtue of (35) and (36),
we get the first equation in (34) valid to within O(�) (the multiplication by � has removed
the divergence associated with �−1).

The last equation in (34) is not obvious. Indeed, one would think that the term u(xm) must
first be derived from the recurrence procedure (20) and (21) and only afterwards can the passage
to the limit � → 0 be carried out—the procedure of a prodigious complexity. However, we
have a way out: we simply take the sum of non-diverging terms (taking into account expression
(35)) in the right-hand side of equation (21), n = m − 1 to be zero in the continuum limit,
i.e., we get the last equation in (34). This by no means contradicts the uniqueness of the sought
limiting potential. First, this provides the limiting equation for K(x, y) for the case x = y

which must exist, obviously. Second, by continuity, the factor Vd(x) − ◦
V d(y) + 2[ud(x) −

◦
ud(y)] in front of K(x, y) must coincide with Ṽd(x) − ◦

V d(x) + ũd(x) − ◦
ud(x) when x = y.

In other words, that means that V (x) = Vd(x) + 2ud(x) = Ṽd(x) + ũd(x) +
◦
ud (x), i.e., the

solutions of (21) go over, in the limit � → 0, into the same local potential V (x), which was
clear beforehand. Hence, with the new definition for V (x), we have from (33) and (34):

V(x) = ◦
V(x) + 2

d

dx
K(x, x). (37)

This is the known result of recovering potential in the continuum case, which only now has
become reproducible from a discrete mathematics.

Equations (33) and (34) can now be rewritten as


{V (x)− ◦
V(y)}K(x, y)

= ∂2

∂x2 K(x, y) − ∂2

∂y2 K(x, y),

V (x)− ◦
V(x) = 2 d

dx
K(x, x).

(38)

This system (added by K(0, 0) = 0) represents the classical Goursat problem (for determining
K(x, y)) and its solvability follows from the well-known theorems.

The orthogonalization can also be started from the last vector ϕ(π) with ‘number’ x = π

at the right boundary of the interval [0, π ]. Then, instead of the solutions ϕ(x), the solutions
f (x) will be used such that f (π) = 0, f ′(π) = 1. The corresponding inverse problem
equations, which can be associated with the orthogonalization ‘from the right to the left’, have
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an analogous form as equations (28), (30), (31) and (37), only with other integration limits
and a different sign in front of the derivative in the expression for V (x):

f (x,E) =
◦
f(x,E) +

∫ π

x

K(x, y)
◦
f(y,E) dy, (39)

K(x, y) + Q(x, y) +
∫ π

x

K(x, z)Q(z, y) dz = 0, (40)

Q(x, y) =
∑

ν

γ 2
ν

◦
f(x,Eν)

◦
f(y,Eν) −

∑
µ

◦
γ 2

µ

◦
f(x,

◦
Eµ)

◦
f(y,

◦
Eµ), (41)

V (x) = ◦
V(x) − 2

d

dx
K(x, x). (42)

Here, the symbol γν stands for the spectral weight factor which is an analogue of cν . The
only discrepancy is that γν characterizes the behaviour of the νth eigenfunction at the right
boundary

�(x,Eν) = γνf (x,Eν); γν = d

dx
�(x,Eν)

∣∣∣∣
x=π

.

Finally, let us mention about the eigenvalue inverse problem for the Schrödinger equation
added by boundary conditions of arbitrary kind:

� ′(0) − g�(0) = 0, � ′(π) + G�(π) = 0. (43)

Here, we also have analogous inversion equations, and as spectral weight factors there
appear values of the corresponding eigenfunctions at the interval edges: cν = �(0, Eν)

or γν = �(π,Eν).

4. Conclusions

In the present paper, we carried out the derivation of main formulae of the inverse eigenvalue
problem on the basis of its discrete approximation. Several statements of that problem have
been developed by now; we selected such a statement in which it is possible to reproduce in a
straightforward way the future structure of the limiting inversion procedure: the transition from
a known system to the system with given spectral data (eigenvalues plus norming constants)
but with unknown potential to be restored. The off-diagonal elements are introduced into the
matrix Sturm–Liouville operator (three-diagonal matrix), which is consistent (in contrast to the
previous works) with the problem statement involving this double set of spectral parameters.
Finally, in comparison with the usual derivation of the continuum inversion equations, our
development seems to be no more complicated. At the same time, the reader acquires the
ability to track additional aspects of the formalism in more detail, in particular to look upon
the operator transformation realizing the recovering procedure as the orthonormalization of
the operator eigenvectors.
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